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Abstract
First three non-vanishing sum rules for the bulk and longitudinal stress auto-
correlation functions have been evaluated for liquid Rb at six thermodynamic
states along the liquid–vapour coexistence curve. The Mori memory function
formalism and the frequency sum rules have been used to calculate bulk and
longitudinal viscosities. The results thus obtained for the ratio of bulk viscosity
to shear viscosity have been compared with experimental and other theoretical
predictions wherever available. The values of the bulk viscosity have been
found to be more than the corresponding values of the shear viscosity for all
six thermodynamic states investigated here.

1. Introduction

The bulk viscosity can be considered as a measure of the resistance offered by a medium
subjected to the forces of compression or expansion. In fact, it plays an important role in
understanding the intermolecular forces of attraction and also the acoustic phenomena at a
microscopic level. In addition, bulk viscosity plays an important role in the study of the
dynamical structure factor, a quantity which is directly measurable in neutron diffraction
experiments. Despite its immense importance, the bulk viscosity of a fluid is the least
studied among all the atomic transport coefficients, like diffusion, shear viscosity and thermal
conductivity. One of the unavoidable reasons for this is that one carries out experimental
measurements of bulk viscosity only by indirect methods. Nevertheless, there exist [1–4]
some estimates for the bulk viscosity of various liquids, which encourage one to study this
quantity using a microscopic approach.

Microscopically, one can study bulk viscosity by the Green–Kubo method which expresses
it [5] as the time integral of the bulk stress–time auto-correlation function. The bulk stress
auto-correlation (BSAC) function can be calculated by using Mori’s memory function
approach [5–7] coupled with its sum rules. We have derived expressions [7] for the sum
rules of the BSAC function which were further used to study bulk viscosity in a Lennard-Jones
(LJ) fluid. Another equivalent approach to calculating bulk viscosity is through the evaluation
of longitudinal and shear viscosity by exploiting the relation ηB = ηl − 4/3ηs, where ηB, ηl

and ηs are, respectively, the bulk viscosity, longitudinal viscosity and shear viscosity. The
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longitudinal viscosity and shear viscosity can be estimated through the knowledge of the time
development of longitudinal and transverse stress auto-correlation functions. Sum rules for
these auto-correlation functions have also been derived [7, 8] and have been used to study the
bulk viscosity of LJ fluids. It was found that both methods have provided a good description of
the bulk viscosity coefficient, as has been judged by comparing our results with those obtained
from computer simulations [9, 10]. In fluids like Ar, it is known [1, 9] that the ratio of bulk
viscosity to shear viscosity is always less than 1. However, in the case of liquid metals, this
ratio has been found to be greater than one. For example, in the case of Rb, this ratio near
the melting point was experimentally found [11] to be around 3.73. Recently, Okumura and
Yonezawa [12] derived a new formula for the bulk viscosity in terms of the pair potential and
derivatives of the pair distribution function, g(r). They have also studied [13] the behaviour
of a modelled liquid metal for which the interatomic potential is density-dependent and it is
found that the bulk viscosity is sensitive to the shape of the potential. Derivatives of g(r)

w.r.t. density and r appears in their expression. Though these derivatives are related to triplet
correlation function, it does not provide explicit information about the role played by the triplet
correlation function in determining the bulk viscosity. Therefore, it is also of interest to study
the behaviour of the viscosities of liquid metals at different densities and temperatures using
the density-dependent interatomic potential and to extract information about the role played
by three-particle correlation.

In the present work, we study the bulk viscosity of the expanded Rb along liquid–vapour
co-existence curve at six thermodynamic states. We have employed a pseudo-potential and
corresponding pair distribution function to [14] evaluate at first three non-vanishing sum rules
of the bulk and longitudinal stress auto-correlation functions (LSAC). Bulk and longitudinal
viscosities have been estimated by using values of the sum rules and Mori’s memory function
formalism. The results obtained have been compared with corresponding values of shear
viscosity and other estimates wherever available. It has been found that the bulk viscosity
calculated from the BSAC function is consistent with the values obtained from the knowledge
of longitudinal and shear viscosities. It is also found that the ratio of bulk viscosity to shear
viscosity is greater than 1 for all the thermodynamic states investigated here,which is consistent
with earlier predictions [15] and the experimental result [11] wherever available. The effect
of three-body correlation has also been studied in predicting bulk and longitudinal viscosities.
It has been found that three-body correlations play a very important role in estimating the
viscosities of metals.

The layout of the paper is as follows. In section 2 we present the theory involved. Section 3
contains the results and discussion. The summary and conclusion is brought out in section 4.

2. Theory

The theoretical approach, which is more frequently used for dense fluids, is through the Green–
Kubo method. The Green–Kubo formula for the calculation of longitudinal viscosity is given
as

ηl = 1

V kBT

∫ ∞

0
dt Sl(t). (1)

In the above equation, Sl(t) is the LSAC function defined [5] as

Sl(t) = 1
3 〈J aa(t)J aa(0)〉, (2)

with

J ab =
N∑

j=1

(
p ja p jb

m
+ r ja Fjb

)
− δabV

(
P +

dP

dE
(E − Ē)

)
, (3)
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where a and b run over x , y and z. Also p ja, r ja and Fja are the ath component of velocity,
position and force, respectively, of the j th particle. The angular brackets represent the
canonical ensemble average. P , V , kB, T and m are the average pressure, volume, Boltzmann
constant, temperature and mass, respectively. The first two terms in equation (3) represent
the momentum current due to kinetic and potential contributions to viscosity, whereas the last
term is suitable for a NVT ensemble. The inclusion of the last term is essential so as to get the
appropriate density dependence even for an ideal gas. Expressions for Ē and PV in terms of
the pair potential, u(r), and pair distribution function, g(r), are given as

Ē = 3
2 NkBT + 2πn

∫ ∞

0
r2g(r)u(r) dr, (4)

and

PV = NkBT − 2πn

3

∫ ∞

0
dr r3g(r)

du(r)

dr
. (5)

The second Green–Kubo relation, which relates the bulk viscosity, ηB, directly to the so-called
BSAC function, SB(t), is given [5] by

ηB = 1

V kBT

∫ ∞

0
dt SB(t), (6)

where

SB(t) = 1
9

∑
a

∑
b

〈J aa(t)J bb(0)〉. (7)

The exact calculation of SB/l(t) is a difficult task for realistic fluids as it involves the
correlation of two dynamical variables at two different times. Therefore, we use Mori’s
equation of motion [6] to calculate SB/l(t). Mori’s equation is given as

dS(t)

dt
= −

∫ t

0
M1(t − τ )S(τ ) dτ, (8)

where M1(t) is the first-order memory function which, at t = 0, is related to the sum rules of
S(t). We have suppressed the superscript l or B as the procedures followed for the evaluation
of SB(t) and Sl(t) are the same. The frequency sum rules of S(t) are given by the short time
expansion coefficient defined as

S(t) = S0 − S2
t2

2!
+ S4

t4

4!
. . . , (9)

where S0, S2, and S4 are the zeroth-, second- and fourth-order sum rules of the stress auto-
correlation function, respectively. The expressions for S0, S2 and S4 have already been given in
the work of Tankeshwar et al [7]. For the sake of completeness and to correct a few typographic
mistakes, these are given in the appendix. Defining the Fourier–Laplace transform of S(t) as

S̃(ω) = i
∫ ∞

0
exp(−iωt)S(t) dt, (10)

we obtain from equations (8) and (10)

S̃(ω) = − S(t = 0)

ω + M̃(ω)
. (11)

Using equation (1) or (6) and (11), we obtain

η = i

V kBT

S0

M̃(0)
. (12)
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Thus, the problem of calculating S(t) is now reduced to the evaluation of the memory
function. Though there exists a microscopic expression for the memory function in terms of
the projection operator, its calculation based on the mode coupling approach for any density
and temperature is much more involved. In the present work, we use a phenomenological form
for the memory function proposed earlier [8] which is given as

M(t) = M(0) sech(t/τ). (13)

This memory function behaves as Gaussian at small times and as a simple exponential at long
times. The parameters M(0) and τ are so determined that short-time properties are exactly
satisfied. It is found that

M(0) = δ1 = S2

S0
, (14)

and

τ−2 = δ2 = S4

S2
− S2

S0
. (15)

The memory function given by equation (13) is a solution of a nonlinear equation given as

d2 M(t)

dt2
− M(t)

τ 2
+

2M3(t)

τ 2 M2(0)
= 0. (16)

The above equation is derivable from Mori’s equation of motion by employing two
approximations [16, 17] for the higher-order memory function. Equations (12)–(15) provide
an expression for the viscosity given as

η = 2n

πkBT

(
S0

2

S2

)(
S4

S2
− S2

S0

)1/2

, (17)

where n is the number density. We will use this equation to calculate ηB and ηl. This expression
has already been used [18] to study the shear viscosity of expanded Rb using the corresponding
sum rules.

3. Results and discussion

We have obtained numerical results for the zeroth-, second- and fourth-order sum rules of the
bulk and LSAC functions from the expression given in the appendix for six thermodynamic
states along the liquid–vapour co-existence curve of expanded rubidium. For the interaction
potential, we have used the Ashcroft pseudo-potential with Ichimaru–Utsumi screening and the
corresponding g(r) obtained through molecular dynamics (MD) simulation performed by Kahl
and Kambayashi [14]. This potential has been used earlier [18] to study the shear viscosity
of expanded Rb and has provided good agreement with computer simulation/experimental
results. For the static triplet correlation function we have used a superposition approximation.
The superposition approximation has been tested [19] to evaluate sum rules of transverse stress
auto-correlation by comparing the results with those obtained by performing MD simulations
for LJ fluids. It is found that, at the triple point, this approximation overestimates the results
of the triplet contribution only by about 10%.

The thermodynamic states chosen in the present work, the values of ε (the well depth
of the potential) and σ (the position of the first zero of the potential) are given in table 1.
The numerical integration involved in the evaluation of the sum rules are carried out by using
the Gauss-quadrature method. The results obtained for the sum rules of LSAC and BSAC
functions are, respectively, given in tables 2 and 3. In these tables and in what follows, Snm

represents the m-body contribution to the nth sum rule. It can be seen from the table that the
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Table 1. Temperature, T (K), and mass density, ρ (g cm−3), of six thermodynamic states of Rb
investigated in the present study. σ (Å) and ε (10−12 ergs) are the position of the first zero and
well depth of the potential.

State T ρ σ ε

1 350 1.460 4.197 862 0.075 198 52
2 373 1.440 4.196 282 0.075 672 48
3 1073 1.130 4.107 260 0.087 710 05
4 1373 0.980 4.041 256 0.098 709 86
5 1673 0.830 3.950 153 0.116 712 9
6 1873 0.640 3.765 076 0.161 359 0

Table 2. Values of the sum rules of the LSAC functions. Sl
nm represents the m-body contribution

to the nth-order sum rule. S0, S2 and S4 are in units of ε2, ε3/mσ 2 and ε4/m2σ 4, respectively.

State Sl
0 Sl

22 Sl
23 Sl

42 × 10−3 Sl
43 × 10−3

1 28.285 4191.5 −2991.1 985.290 −286.620
2 29.032 4366.6 −2938.0 1060.400 −276.820
3 47.553 6873.4 −2566.5 2626.200 −119.170
4 49.258 7057.4 −2181.7 2724.100 −101.600
5 39.507 3817.5 −1002.4 1366.900 −31.294
6 21.980 1726.8 −352.50 393.750 −8.099

Table 3. Values of the sum rules of the BSAC functions. SB
nm represents the m-body contribution

to the nth-order sum rule. S0, S2 and S4 are in units of ε2, ε3/mσ 2 and ε4/m2σ 4, respectively.

State SB
0 SB

22 SB
23 SB

42 × 10−3 SB
43 × 10−3

1 15.936 2149.1 −1657.5 448.430 −44.222
2 16.297 2230.0 −1617.8 478.260 −35.668
3 25.141 3081.3 −1547.2 913.290 −43.859
4 26.667 3115.5 −1341.6 878.450 −110.540
5 19.910 1566.3 −643.4 401.220 −38.917
6 11.298 739.5 −220.2 112.310 −16.540

three-body contribution to the second sum rule varies from about 20 to 70% as we go from
the sixth to the first thermodynamic state. On the other hand, the three-body contribution to
the fourth sum rule varies only from about 2 to 30%. It implies that the time evolution of the
stress auto-correlation function is strongly dependent on the triplet correlation’s contribution,
even at short times. The triplet contribution up to t4 terms in the expansion (9) is exactly taken
care of by the theory involved. At longer times, higher-body contributions will also play their
role which are incorporated in the present work only in an approximate manner. Here, it is
also interesting to note that the maximum three-body contribution is about 50% in the case
of LJ fluids at the triple point. Thus, a greater contribution of the multiparticle correlation in
liquid metals as compared to inert fluids may be attributed to the softness of the potential as
sum rules are found to be more sensitive to the details of the potential at smaller distances.

The longitudinal and bulk viscosity of the expanded rubidium is calculated from
equation (17) by using the values of the sum rules from tables 2 and 3. The results obtained
for the bulk and longitudinal viscosity of expanded Rb are given in table 4. In table 4 we have
also presented results for the shear viscosity obtained in an exactly similar fashion and are
compared with experimental results (column 3) taken from [14]. The results obtained for ηB
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Table 4. Shear, longitudinal and bulk viscosities, in centipoise, for six thermodynamic states
of Rb. The subscript 2 represents the fact that viscosities have been calculated by including only
two-body correlations.

State ηs ηs(exp) ηs2 ηl ηl2 ηB ηB2 ηl − 4
3 ηs ηB/ηs ηB/ηs [15]

1 0.484 0.476 0.089 2.465 0.247 2.020 0.141 1.811 4.12 1.59
2 0.412 0.433 0.087 1.932 0.240 1.475 0.136 1.378 3.55 1.57
3 0.136 0.136 0.083 0.517 0.219 0.402 0.117 0.331 2.94 1.35
4 0.094 0.112 0.065 0.365 0.184 0.264 0.101 0.239 2.77 1.26
5 0.103 0.9996 0.078 0.338 0.198 0.240 0.101 0.200 2.31 1.11
6 0.056 0.0870 0.044 0.168 0.109 0.093 0.051 0.091 1.61 1.00

from ηl − 4/3ηs are also depicted in table 4. The closeness of the results from ηl − (4/3)ηS

with those calculated directly for ηB demonstrates that the memory function for longitudinal,
transverse and bulk stress auto-correlation functions can have the same functional form but
with different relaxation times. The calculations [15], which use the same relaxation time for
BSAC as that for the shear viscosity, result in a ratio of ηB/ηs given in the last column of
table 4. It can also be seen from the table that our present values of ηB/ηs vary from 4.12 to
1.61. The experimental value [11] of ηB/ηs at a thermodynamic state which is close to the first
thermodynamic state is 3.73. Thus, we see that the prediction of our values of bulk viscosity
is quite reasonable. The higher value of this ratio at T = 373 K is not an unexpected result,
as can be judged from the available experimental value [11] of 2.4 for liquid Na and K. Here,
it may be noted that the maximum value of this ratio for LJ fluids at the triple point is around
0.6.

In order to study the importance of the multiparticle contribution to viscosity, we have
calculated ηs, ηB and ηl by neglecting three-body contributions to the second and fourth sum
rules. The results obtained are given in table 4 and are represented by ηs2, ηB2 and ηl2. It can be
seen that the three-body correlations play a significant role in determining the viscosity of the
system and the effect of three-body correlations increases as one moves towards the melting
point.

4. Summary and conclusion

In this paper, we have given estimates of the bulk and longitudinal viscosities of expanded Rb
for six thermodynamic states. The values of the bulk and longitudinal viscosities have been
contrasted with the corresponding values of shear viscosity. The ratio of bulk to shear viscosity
has been compared with the experimental result available only at a density close to the melting
point. It is found that the ratio of bulk viscosity to shear viscosity decreases from 4.12 to 1.61
on moving from T = 373 to 1873 K along the liquid–vapourco-existence curve. We have used
the Mori memory function formalism and values of the first three non-vanishing sum rules.
The sum rules have been evaluated using a density-dependent potential and corresponding
g(r) obtained through simulation studies. It has also been found that three-body correlation
functions play a very important role in determining the viscosity of the liquid metal.

Appendix. Expressions for sum rules

The expression for the zeroth sum rule of the LSAC function, Sl
0, is obtained by putting t = 0

in equation (2). The expression thus obtained after taking ideal values of V dP/dE , PV and
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Ē is given as

Sl
0 = 4

3
(kBT )2 +

2πn

15
kBT

∫ ∞

0
dr r4g(r)(3Ar2 + 5B). (A.1)

The expression for Sl
2 is obtained by evaluating the thermodynamic average

Sl
2 = 〈 J̇ xx (t) J̇ xx (t)〉t=0, (A.2)

where J̇ xx (t) is the first time derivative of J xx (t). The final expression for Sl
2 involving only

a static pair and triplet correlation function is given as

Sl
2 = 4πkBT n

15m

∫ ∞

0
r2g(r) dr [r2(5B2 + 3A2r4 + 6ABr2) + kBT (18Cr4 + 165Ar2 + 225B)]

+
8π2kBT n2

15m2

∫ ∞

0
r2 dr

∫ ∞

0
r2

1 dr1

∫ 1

−1
dβ1 g3(r, r1)

× β1[rr1(Ar2 + B)(A1r2
1 + 5B1) + 2β2

1 AA1r3r3
1 ]. (A.3)

In the above expressions and in what follows, g(r) and g3(r, r1) are the static pair and
triplet correlation functions and

B = 1

r

dU(r)

dr
, A = 1

r

dB

dr
,

C = 1

r

d A

dr
, D = 1

r

d A

dr
.

(A.4)

The subscript 1 on these implies that the argument of the potential U(r) is replaced by r1. The
fourth sum rule of the LSAC is defined as

Sl
4 = 〈 J̈ xx (t) J̈ xx (t)〉t=0, (A.5)

where J̈ xx (t) is the second time derivative of J xx (t). The final expression for Sl
4 involves static

pair, triplet and quadruplet contributions and is given as

Sl
4 = 4πn

15

kBT

m

∫ ∞

0
dr g(r)r2[54(kBT )2(Dr4 + 10Cr2 + 15A) + kBT (1890B2

+ 1504A2r4 + 2340ABr2 + 216BCr4 + 324ACr6 + 18C2r8)

+ 2r2(5B3 + 9AB2r2 + 9A2 Br4 + 3A3r6)]

+ 8π2n2 (kBT )

15m2

∫ ∞

0
dr

∫ ∞

0
dr1

∫ 1

−1
dβ1 g3(r, r1)r

2r2
1 [kBT (105(9B B1

+ 3B A1r2
1 + 1

3 AA1r2r2
1 (6β2

1 + 1) + 3AB1r
2) + 30(3B1Cr4 + 15AB1r2

+ 3A1Cr4r2
1 β2

1 + AA1r2r2
1 (9β2

1 + 2)) + 12rr1β1(3B1Cr2 + 15AB1

+ C A1r2r2
1 (2β2

1 + 1) + 11AA1r
2
1 ) + 3(CC1r4r4

1 β2
1 (2β2

1 + 1)

+ 2A1Cr4r2
1 (8β2

1 + 1) + AA1r2r2
1 (28β2

1 + 9))) + r(r + 4β1r1)(3AA1 B1r2r2
1

+ 6AB B1r
2 + 5B2 B1) + r A1 B2(12r3

1 β1 + rr2
1 (2β2

1 + 1)) + A1 A2r5r2
1 β1(3β1r

+ 4r1(2β2
1 + 1)) + 4Ar3 A1r1β1 B(3β1r + 4r1(2β2

1 + 1)) − (1/2)[5r2 B B1 B2

+ B A1 B2r2
1 (3r2

1 + r2(2β2
1 + 1)) + 3β2

1r4 A1 AB2r2
1 + B A1 A2r2

1 r2β3

× ((3β1r3 − 3r3
1 ) − rr1r2(β2 + 2β1β3) − 6r2

1 r2β3)

+ β1β2r4 AA1 A2r2
1 r2

2 (5β3 − 2β1β2) + B B1 A2r2(3β2
2r2

2 + r2
1 (1 − β2

1 ))]]

+

(
πn

15
kBT

∫ ∞

0
dr r4g(r)(3Ar2 + 5B)

)(
4πn

3

∫ ∞

0
dr r2g(r)(Ar2 + 3B)

)2

.

(A.6)
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The last term in equation (A.6) represents the approximate four-body contribution in terms of
the static pair correlation function. In the above equation r2 = r1 − r and subscript 2 with A,
B and C imply that the argument of U(r) is changed from r to r2. Further, β1, β2 and β3 are
cosines of the angles between r and r1, r and r2 and r1 and r2, respectively.

Expressions for the sum rules of the bulk stress auto-correlation function can also be
obtained in a similar fashion. The expression for the zeroth sum rule of the bulk stress auto-
correlation function after taking ideal values of V dP/dE , PV and Ē are obtained as

SB
0 = 2πn

9
kBT

∫ ∞

0
dr r4g(r)(Ar2 − B). (A.7)

The expression for the second sum rule is

SB
2 = 4πn

9m
(kBT )2

∫ ∞

0
dr r2g(r)[(6Cr4 + 45Ar2 + 45B) + r2(kBT )−1(Ar2 + B)2]

+ 8π2n2 (kBT )

9m2

∫ ∞

0
dr

∫ ∞

0
dr1

∫ 1

−1
dβ1 g3(r, r1)r

2r2
1 rr1β1

×(AA1r2r2
1 + B A1r2

1 + AB1r2 + B B1). (A.8)

The expression for the fourth sum rule of the bulk stress auto-correlation function is given as

SB
4 = 4πn

9

(
kBT

m

)2 ∫ ∞

0
dr g(r)r2[18(kBT )2(Dr4 + 10Cr2 + 15A) + kBT (378B2 + 432A2r4

+ 612ABr2 + 72BCr4 + 108ACr6 + 6C2r8) + 2r2(B + Ar2)3 − 4B3r2]

+ 8π2n2 (kBT )2

9m2

∫ ∞

0
dr

∫ ∞

0
dr1

∫ 1

−1
dβ1 g3(r, r1)r

2r2
1 [63(3B B1 + B A1r2

1

+ AA1r2r2
1 β2

1 + AB1r2) + 18(B1Cr4 + 5AB1r2 + A1Cr4r2
1 β2

1 + AA1r2r2
1

× (2β2
1 + 1)) + 8rr1β1(B1Cr2 + 5AB1 + C A1r2r2

1 + 5AA1r2
1 )

+ 3r2r2
1 (CC1r2r2

1 β2
1 + A1Cr2(2β2

1 + 1) + AC1r2
1 (2β2

1 + 1) + AA1(4β2
1 + 7))

+ kBT −1[4rr1β1(2AA1 Br2r2
1 + AB B1r

2 + B2 B1 + A1 B2r2
1 + A2 A1r4r2

1

+ B AB1r2 + A2 B1r4) + r2(Ar2 + B)2(A1r2
1 β2

1 + B1)

− 1
2 [r2 B B1 B2 + B A1 B2r2

1 r2β2
1 + β2

1r4 A1 AB2r2
1 + B A1 A2r2

1 r2
2 r2β3β1β2

+ β1β2r4 AA1 A2r2
1 r2

2 (2β3 − β1β2) + B B1 A2r2β2
2r2

2

+ AB1 B2r4 + AB1 A2r4r2
2 β2

2 ]]. (A.9)

These expressions are suitable for numerical integration.
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